Krzysztof PETELCZYC Uniwersity of Białystok Institute of Mathematics, Department of Foundations of Geometry ul. Akademicka 2, 15-267, Białystok tel./ fax: 0-85 745 75 52, e-mail: kryzpet@math.uwb.edu.pl

MÖBIUS PAIRS

Key words: Möbius configuration, *N*-simplex, projective space, automorphism.

The Möbius configuration is a certain configuration in Euclidean 3-dimensional space consisting of two mutually inscribed and circumscribed tetrahedra. Each vertex of one tetrahedron lies on a face plane of the other tetrahedron and vice versa. The configuration consists of 8 points (vertices) and 8 blocks (planes), such that each block consists of 4 points and each point is contained in 4 blocks.

It is known from [2], that there are five 8_4 -configurations with the property that at most two planes share two points, and dually: at most two points are common to two planes. The configurations of interest are precisely those with two tetrahedra, each inscribing and circumscribing the other.

One may consider a configuration of this type in n-dimensional space: we take two n-simplices instead of tetrahedras. The obtained structure will be reffered to as a *Möbius pair* (cf. [1]) of n-simplices, or shortly *Möbius* n-*pair*. The manner of incsribing (and all construction) may be well expressed in a combinatorial approach. Let us consider two disjoint n-element sets, say A and B. We identify vertices of one simplex with elements of A, and vertices of the second simplex with elements of B. Then faces of simplices correspond to the (n-1)-element subsets of A and B, respectively. Finally, we set some permutation φ of n-element set, that assigns vertices of one simplex to the faces of the another one. As an effect we get combinatorial configuration, denoted by $M_{(n, \varphi)}$.

It was proved in [4], that the classical Möbius configuration ($M_{(4,id)}$) may be realized in a 3-dimensional projective space if and only if the basic field is commutative. In [1], the existence of non-degenerate Möbius pairs is established for projective spaces of all odd dimensions.

The number of pairwise nonisomorphic configurations $M_{(n,\varphi)}$ coincides to the number of conjugacy classes of the group S_n . We set conditions, under which $M_{(n,\varphi)}$ contains Möbius n -pairs distinct to the original Möbius n -pair, that in fact defines $M_{(n,\varphi)}$. Moreover, it turns out, that for k < n Möbius k -pairs may be nested in $M_{(n,\varphi)}$.

From the original paper of Möbius [3], the automorphisms group of $M_{(4,id)}$ has order 192. We characterize automorphisms of the remaining structures $M_{(n,\varphi)}$ and establish corresponding groups.

References:

^[1] Havlicek H., Odehnal B., Saniga M.: "Möbius pairs of simplices and commuting Pauli operators", Math. Pannon. 21, 115-128, 2010.

^[2] Hilbert D., Cohn-Vossen P.: "Anschauliche Geometrie", Springer Verlag, Berlin, 1932.

^[3] Möbius A. F.: "Kann von zwei dreiseitigen Pyramiden einejede in Bezug auf die ander um- und eingeschriehen zugleich heissen?", Journal f
ür die reine und angewandte Mathematik 3: 273–278, 1828.

^[4] Witczyński K.: "Möbius' theorem and commutativity", J. Geom. 59, 182-183, 1997.