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In classical Descriptive Geometry we can find eonibns a such of geometric surfaces as:
twisted column, the Saint-Gilles surface and camdhce with relation to a helix as a path [1]
(Fig. 1). This leads to the concept of the soechéllice-based transformation [2]. Many
of the simple and frequently used nonlinear tramsé&tions operate as follows. One
slices the object to be transformed by paralleh@éa These slices are then rearranged

(displaced, and perhaps also scaled) in a systemayji to a new object.

Figure 1: Twisted column- <upporting plane o Figure 2:Canal surface supporting
generating circle orthogonal to helix axis (lefgint- plane of generating circle
Gilles surface circle in meridian plane (right) [1] orthogonal to helix tangent [1]

The twist deformation [2] will be discussed firsTo define the twist

deformation, we select a fixed bottom plghand a straight line (calledtwist axig
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orthogonal to the plang(Fig. 8b). The layers of the object in planes agtinal to the
axis (i.e., parallel tg3) are now rotated abowt as follows. The bottom plang
remains fixed and the rotational angtg,,, of the top plane, is prescribed. We
assume that the distance between the bottom anglaoes ish, the height of the
object to be deformed. The rotational angle) of the slice at height abovep is

selected to be

(2) = + G @

There is an obvious connection with helixes andchemotions. Any straight line
parallel toa is mapped to a helix with axé Another interesting property of the twist
operation is that ipreserves the volume.

Figure 3: The Turning Torso (20-2005) Figure 4: Assumptions for the derivation of tapg
in Malmo by Santiago Calatrava [2,3] transformation formula

Tapering deformation [2]. To describe ttepering deformation in a precise
way, we use a mathematical description and seleadapted Cartesian coordinate
system in whicha is thez axis ands is the Oxy-plane. Furthermore, we assume that
the scaling directions are parallel to the- andOy - axes, respectively. Hence, in the
top planer(which has the equation = h (h being the distance betwegrandz) the
scaling is of the fornx’ = v-x, y = w-y. Here, we have denoted the user-specified
scaling factors in the& andy directions by andw, respectively. Because the bottom
plane remains fixed, we may say it is scaled waittdr 1 in both directions. One then
uses a linear variation of the scaling factors ketwbottom and top planes. This

means that the scaling factgg) for thex direction in height is equal to



v(z) =1+ %(v — 1. )

From the Figure 4 we can write
X o vx vh 3)

——-p=

h+p p 1-v

Using the denotations from the Figure 4

v(2)x _ v(z)x _ B 4)
S¥h—z_ p - pv(z) =v(p+h-—2)

and by substituting (3) in (4) we canderivate @ thrmula (5):
®)

h v(z)=v< vh

1-v 1-v
As desired,v(0) = 1 andv(h) = v. Replacingv with w, we obtain the

+h—z)—>v(z)=1+%(v—1).

scaling factor in thg direction. In the plane at heightthe scaling ix'= v(2)-x, y=
w(2)-y. Inserting the expressions (5) for the scaling fes;teve arrive at the following
analytical representation of the tapering operation

x’:x+%(v—1)

(6)
y’=y+¥(w—1)

7' =z
Because we see on the right-hand side teraesndy-z respectively, tapering is not a
linear transformation. It is a spectaladratictransformation.

If one wants to have thickening or thinning effestithout loss of
smoothness, one can use a deformation techniquetisees calledbulge. It works
like tapering, but uses smooth scaling functief@sandw(z).

Shear deformations [2]. Twisting rotates the sliGespering and bulging scale
the slicesSheardeformations apply translations to the slid&scause a translation is
determined if we know the image point of a singhkénp one prescribes the image

of the axisa. The shear deformation is determined uniquelyheychange of the axis.
Shear transformations leave the shape and thushasarea of the slices unchanged.
They also preserve the heightof each slice. By Cavalieri's principle, shear
transformations are therefore volume preservighitecture that may be the result
of a shear-like deformation is realized in Lond@ity Hall by Norman Foster).
Bending deformations [2]. Some systems may contian nonlinear shear

deformations discussed previously as versionsbafiding In the following we
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examine bending deformations that also change tiemtation of the slices. In an
elementaryadial bendingoperation, the axia is mapped to a circla’ and the slices
are rearranged in planes normal to the circle

There are also modeling options that changexdrtmre general curve (e.g.,
a Bézier curve) and rearrange the slices in planasal toa’. The arising freedom of
a rotation aboud’ may be resolved as in our discussion of the ratatimimizing
frame.
The way of the realization the discussed abovestoamations is various in
AutoCAD: indirect or direct depending on complexif the transformation form:
a-a.

The remainder of the paper presents the implementaf the previously
discussed surface and the "simple transformatio@LitoCAD, version 2012.

Implementation of the following surfaces: twistedlwenn, Saint-Gilles
surface, and channel surface can be obtained éradevays. One can use the SWEEP

command with the option of Alignment (Fig. 5).

Figure 5. Implementation of the surface from classicahwry: a) path and cross-section; b) the
surface of Saint-Gilles; c) channel surface; d) théaserof twisted column (SWEEP with the

option of Alignment)
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Unfortunately, the SWEEP
b) function has its limitations when it comes
to dragging cross sections. We are not able
to model an object when the size of its
cross sections of the result will
interpenetration of the object. In particular,
it is impossible to generate a classical

architectural twisted column by dragging

the cross sections along the helix.
However, the twisted column can be obtained whenirag the cross section (circle)
along a straight line

(vertical),

simultaneously rotating
it about the point which
is not the center of the
circle (Fig. 6).
Figure 6. Implementation

of a real architectural

element - a twisted
column: a) path and cross section; b) the surface ofatiseetl column (SWEEP with a rectilinear
path and rotation about the point which is not the ceffitdreccircle)

Another way to obtain these surfaces is to use¢ @€T command. This is
an approximate solution, however, often fully datitory (Fig. 7).
a) b)

Figure 7. Implementation of the Saint-Gilles surfagegpath and cross-sections; b) the Saint-Gilles
surface (LOFT)

Twist transformations. We cannot turn, bend, etc. the created objeceadly in the
design phase we need to know the parameters thal\wiv to get the final result.
We can use several functions. These are the consn8WdEEP, LOFT(Fig. 8, 9).

a) b)




PROCEEDINGS OF 19" CONFERENCE GEOMETRY GRAPHICS COMPUTER

Figure 8. lllustration of the twist transformation: a)tpahd cross-section; b) the obtained solid; c)
the obtained solid with scaled top base (scale 2:1) (SWEEP)

a)

<)

Figure 9. Implementation of the twist and tapering transdtions: a) the curvilinear path, the two
cross sections and the obtained solid; b) a curvilinedr, plag two sections with scaling, and the
obtained solid; c) vertical path, the two cross sectimsthe obtained solid; d) vertical path, the
two sections with scaling, and the obtained solid (LOFT)

Bending transformations. Bending transformations are the simplest to obteia
create hem by using the REVOLVE function. The respiisolid is obtained by
specifying the cross section and the axis or pathuawhich we revolve our cross

section (Fig. 10).

a)

Figure 10. Implementation of bending transformationsoggtion of the cross section about the
axis of Oy; b) rotation about the path, cross section paralldie®ixy plane; c) rotation about the
same path as in the case of b, but the cross sectianaiiel to theDzyplane (REVOLVE)
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Tapering transformations. We can obtain tapering transformations in many svay
using the following commands: EXTRUDE, SWEEP, LOFig. 11, 12).

D
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Figure 11. Implementation of the tapering transformat{e@¥T)

i,

<)

b)
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Figure12. Implementation of tapering transformationsragssections; b)connection by means of

smooth surface; ¢) connection by means of ruled surfa@€ET)
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