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In classical Descriptive Geometry we can find constructions a such of geometric surfaces as:  

twisted column, the Saint-Gilles surface and canal surface with relation to  a helix as a path [1] 

(Fig. 1).  This leads to the concept of the so-called slice-based transformation [2]. Many 

of the simple and frequently used nonlinear transformations operate as follows. One 

slices the object to be transformed by parallel planes. These slices are then rearranged 

(displaced, and perhaps also scaled) in a systematic way to a new object.  

  
Figure 1: Twisted column - supporting plane of 

generating circle orthogonal to helix axis (left), Saint-

Gilles surface - circle in meridian plane (right) [1] 

Figure 2: Canal surface - supporting 

plane of generating circle 

orthogonal to helix tangent [1] 

 

The t wis t  de format i on  [2] will be discussed first. To define the twist 

deformation, we select a fixed bottom plane β and a straight line a (called twist axis) 
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orthogonal to the plane β (Fig. 8b). The layers of the object in planes orthogonal to the 

axis (i.e., parallel to β) are now rotated about a as follows. The bottom plane β 

remains fixed and the rotational angle ���� of the top plane τ, is prescribed. We 

assume that the distance between the bottom and top planes is h, the height of the 

object to be deformed. The rotational angle ����	of the slice at height z above β is 

selected to be 

	�
� = 

�	
�� 

(1)

 

There is an obvious connection with helixes and helical motions. Any straight line 

parallel to a is mapped to a helix with axis a. Another interesting property of the twist 

operation is that it preserves the volume.  

  
Figure 3: The Turning Torso (2000-2005) 

in Malmo by Santiago Calatrava [2,3] 

Figure 4: Assumptions for the derivation of tapering 

transformation formula 

 

Tap er ing d eformat i on  [2]. To describe the tapering deformation in a precise 

way, we use a mathematical description and select an adapted Cartesian coordinate 

system in which a is the z axis and β is the Oxy-plane. Furthermore, we assume that 

the scaling directions are parallel to the Ox - and Oy - axes, respectively. Hence, in the 

top plane τ(which has the equation z = h (h being the distance between β and τ) the 

scaling is of the form x’  = v·x, y’  = w·y. Here, we have denoted the user-specified 

scaling factors in the x and y directions by v and w, respectively. Because the bottom 

plane remains fixed, we may say it is scaled with factor 1 in both directions. One then 

uses a linear variation of the scaling factors between bottom and top planes. This 

means that the scaling factor v(z) for the x direction in height z is equal to 
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���� = 1 + �
ℎ �� − 1�. 

(2)

From the Figure 4 we can write  

�
ℎ + � =

��
� → � = �ℎ

1 − �. 
(3)

Using the denotations from the Figure 4 

�����
� + ℎ − � =

�����
� → ����� = ��� + ℎ − �� (4)

and by substituting (3) in (4) we canderivate of the formula (5): 

�ℎ
1 − � ���� = � � �ℎ

1 − � + ℎ − �� → ���� = 1 + �ℎ �� − 1�. 
(5)

As desired, v(0) = 1 and v(h) = v. Replacing v with w, we obtain the 

scaling factor in the y direction. In the plane at height z, the scaling is x’= v(z)·x, y’= 

w(z)·y. Inserting the expressions (5) for the scaling factors, we arrive at the following 

analytical representation of the tapering operation: 

�′ = � + ��ℎ �� − 1�
�′ = � + ��ℎ �� − 1�
�′ = �.																									

 (6)

Because we see on the right-hand side terms x·z and y·z, respectively, tapering is not a 

linear transformation. It is a special quadratic transformation.  

If one wants to have thickening or thinning effects without loss of 

smoothness, one can use a deformation technique sometimes called bulge. It works 

like tapering, but uses smooth scaling functions v(z) and w(z). 

Shear  d eformat ions  [2]. Twisting rotates the slices. Tapering and bulging scale 

the slices. Shear deformations apply translations to the slices. Because a translation is 

determined if we know the image point of a single point, one prescribes the image a’ 

of the axis a. The shear deformation is determined uniquely by the change of the axis. 

Shear transformations leave the shape and thus also the area of the slices unchanged. 

They also preserve the height z of each slice. By Cavalieri's principle, shear 

transformations are therefore volume preserving. Architecture that may be the result 

of a shear-like deformation is realized in London (City Hall by Norman Foster).  

Bend ing de fo rmat ions  [2 ] .  Some systems may contain the nonlinear shear 

deformations discussed previously as versions of bending. In the following we 
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examine bending deformations that also change the orientation of the slices. In an 

elementary radial bending operation, the axis a is mapped to a circle a’ and the slices 

are rearranged in planes normal to the circle. 

There are also modeling options that changed to a more general curve (e.g., 

a Bézier curve) and rearrange the slices in planes normal to a’. The arising freedom of 

a rotation about a’ may be resolved as in our discussion of the rotation-minimizing 

frame.  

The way of the realization the discussed above transformations is various in 

AutoCAD: indirect or direct depending on complexity of the transformation form: 

a→a’.  

The remainder of the paper presents the implementation of the previously 

discussed surface and the "simple transformation" in AutoCAD, version 2012. 

Implementation of the following surfaces: twisted column, Saint-Gilles 

surface, and channel surface can be obtained in several ways. One can use the SWEEP 

command with the option of Alignment (Fig. 5). 

 
Figure 5. Implementation of the surface from classical geometry: a) path and cross-section; b) the 

surface of Saint-Gilles; c) channel surface; d) the surface of twisted column (SWEEP with the 

option of Alignment) 

a) b) c) d) 
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c) a) b) 
a 

β 

τ 
���� 

Unfortunately, the SWEEP 

function has its limitations when it comes 

to dragging cross sections. We are not able 

to model an object when the size of its 

cross sections of the result will 

interpenetration of the object. In particular, 

it is impossible to generate a classical 

architectural twisted column by dragging 

the cross sections along the helix. 

However, the twisted column can be obtained when we drag the cross section (circle) 

along a straight line 

(vertical), 

simultaneously rotating 

it about the point which 

is not the center of the 

circle (Fig. 6). 

Figure 6. Implementation 

of a real architectural 

element -  a twisted 

column: a) path and cross section; b) the surface of the twisted column (SWEEP with a rectilinear 

path and rotation about the point which is not the center of the circle) 

Another way to obtain these surfaces is to use the LOFT command. This is 

an approximate solution, however, often fully satisfactory (Fig. 7).  

 

Figure 7. Implementation of the Saint-Gilles surface: a) path and cross-sections; b) the Saint-Gilles 
surface (LOFT) 

 

Twist transformations. We cannot turn, bend, etc. the created object. Already in the 

design phase we need to know the parameters that will allow to get the final result. 

We can use several functions. These are the commands: SWEEP, LOFT(Fig. 8, 9).  

a) b) 

b) a) 
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Figure 8. Illustration of the twist transformation: a) path and cross-section; b) the obtained solid; c) 

the obtained solid with scaled top base (scale 2:1) (SWEEP) 

 
Figure 9. Implementation of the twist and tapering transformations: a) the curvilinear path, the two 

cross sections and the obtained solid; b) a curvilinear path, the two sections with scaling, and the 

obtained solid; c) vertical path, the two cross sections and the obtained solid; d) vertical path, the 

two sections with scaling, and the obtained solid (LOFT) 

 

Bending transformations. Bending transformations are the simplest to obtain, we 

create hem by using the REVOLVE function. The required solid is obtained by 

specifying the cross section and the axis or path about which we revolve our cross 

section (Fig. 10). 

 
Figure 10. Implementation of bending transformations: a) rotation of the cross section about the 

axis of Oy; b) rotation about the path, cross section parallel to the Oxy plane; c) rotation about the 

same path as in the case of  b, but the cross section is parallel to the Ozy plane (REVOLVE) 

 

a) b) 

c) d) 

a) c) b) 
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Tapering transformations. We can obtain tapering transformations in many ways 

using the following commands: EXTRUDE, SWEEP, LOFT (Fig. 11, 12). 

 

 
Figure 11. Implementation of the tapering transformations (LOFT) 

 
Figure12. Implementation of tapering transformations: a) cross sections; b)connection by means of 

smooth surface; c) connection by means of ruled surface (LOFT) 
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