Bogusław Januszewski Rzeszow University of Technology Department of Engineering Geometry and Graphics ul. Poznańska 2, 35-111 Rzeszow, POLAND Phone: +48 17 865 13 07 e-mail: banjanus@prz.edu.pl

TYPES OF GRAPHICAL SUBSPACE PROJECTINGS

The application of a so-called graphical subspace projecting is one of the most popular ways to arrive at the graphical representations of geometrical relations defined in the P_n , A_n or E_{An} spaces. The realization of this type of projecting, described by the RS symbol, requires creation in the mapped $P(P_n, A_n \text{ or } E_{An})$ space of a so-called **apparatus of projecting**, which consists of:

- a) the continuous set {\$ } of equal-dimension subspaces \$\$, with dimensions (n-2) or (n-3), referred to as centers of RS projecting, which are elements of an established bundle of subspaces or subspace generators of an established second-degree form,
- b) the projective relation Z that attributes centres $S_i \in \{S\}$ of the projecting RS to individual X_i points of representing P space, more precisely, the relation Z is converting $(X_i \cup K)$ elements of the established bundle $\langle K, P \rangle$ into the $\{S\}$ set; $X_i \Rightarrow S_i = Z$ ($X_i \cup K$), c) the junction relation that establishes projecting form $R_{X_i} = (X_i \cup S_i)$ for every X_i point of P space, where S_i is the centre of projecting RS attributed to point X_i ,
- d) the Π form of projection that is a plane π or an appropriately selected second-degree $\hat{\tau}$ surface; **RS** projecting is transforming the represented *P* space onto the Π form of projection, whereby in this projecting of the X_i^t image projection of the X_i point is identical with the $\Pi \cap \mathbf{R}_{Xi}$ meet.

One can point out many types of projectings in the family **RS** graphical subspace projectings that are applicable in current or newly created reversible methods of graphical representation of multidimensional projective, affinic or Euclidean spaces. The main types among them include:

a) the RC subspace bundle projecting into which apparatus the {\$ } set of projection centres is reduced to an isolated \$\$ subspace, which is generally situated towards the

 π plane of projection and has a dimension of (n-3) in case of an ordinary projecting $(\dim(\mathbf{S} \cap \pi) = -1)$, or of (n-2) in case of a generalized projecting $(\dim(\mathbf{S} \cap \pi) = 0)$,

b) the RB subspace projecting with bundle dispersed centres characterized by the fact that centres S_i of projecting are assigned to individual X_i points of projected the *P* space as subspaces S_i about dimensions (n-2) why (n-3) and being elements of the definite bundle $\langle C, f \rangle$. The attribution is conducted through a correct projective relation Z between bundles $\langle C, f \rangle$ and $\langle K, P \rangle$ having the same factors of manifolds; $S_i = Z(L_i(X_i, K))$,

the RO subspace projecting with centres dispersed on a second-degree c) form; in which case in order to define an apparatus of projecting we establish in the *P* mapping space three bundles $\langle \mathbf{K}, \mathbf{P} \rangle$, $\langle \mathbf{C}_1, \mathbf{f}_1 \rangle$ and $\langle \mathbf{C}_2, \mathbf{f}_2 \rangle$ with identical factors of manifolds. These bundles have the following properties: $1^{\circ} \dim \mathbf{f}_1 = \dim \mathbf{f}_2$, $\dim \mathbf{c}_1 = \dim \mathbf{c}_2 \in \{(n-3), (n-2)\}, 2^{\circ}$ $\mathbf{f}_1 = \mathbf{f}_2$ and $\mathbf{c}_1 \neq \mathbf{c}_2$, when defining an apparatus for the **RQ** projecting that belongs to the family of so-called meet projectings, $3^{\circ} \mathbf{f}_1 \neq \mathbf{f}_2$ and $\mathbf{c}_1 = \mathbf{c}_2$, when defining an apparatus for the RQ projecting that belongs to the family of so-called junction projectings. Furthermore, we are establishing the Cl colineation and the Cr correlation that transform the bundle $\langle \mathbf{K}, \mathbf{P} \rangle$ appropriately onto the $\langle {\it C}_1, \, {\it F}_1 \, \rangle$ and $\langle {\it C}_2 \, , \, {\it F}_2 \rangle$ bundles. The established bundles and defined projective transformations allow us to assign to every point $X_i \in P$ the following three subspaces: $1^{\circ} \mathbf{l}_{i} = X_{i} \odot \mathbf{k}, 2^{\circ} \mathbf{l} \mathbf{b}_{Xi} = Cl (\mathbf{l}_{i}) \in \langle \mathbf{C}_{1}, \mathbf{f}_{1} \rangle, 3^{\circ} \mathbf{2} \mathbf{b}_{Xi} = Cr (\mathbf{l}_{i}) \in \langle \mathbf{C}_{2}, \mathbf{f}_{2} \rangle$. Finally, we assume that the S_i centres of the RQ projecting for individual points $X_i \in P$ are, in case of a so-called meet subspace projection, the meets ${}_{1}\mathbf{D}_{Xi} \cap {}_{2}\mathbf{D}_{Xi} = \mathbf{S}_{i}$ with the dimensions equal to dim $\boldsymbol{c}_1 = \dim \boldsymbol{c}_2$, and in case of a so-called junction subspace projecting, the junctions $_{1}\mathbf{D}_{X_{1}} O_{2}\mathbf{D}_{X_{1}} = \mathbf{S}_{i}$ with the dimension equal to dim $\mathbf{F}_{1} = \dim \mathbf{F}_{2}$. In both cases, the centres \mathbf{S}_{i} are subspace formers of an appropriate second-degree form.

Each of the described types of projectings **RC**, **RB** and **RQ** is being adapted to construction of panoramic images of three-dimensional spaces. Such an adaptation is based on accepting to the form of projection – a background of each of projectings the second degree bundle surface, whereas for centres of the projectings – an isolated point, a set of points of the straight line, or a set of points of a conic, which in each case belong to the inside of the background .