CALCULATION AND DRAWING OF CONSTRUCTION ELEMENTS IN ENGINEERING DESIGN

Algirdas SOKAS

Vilnius Gediminas Technical University
Sauletekio al. 11, LT-10223 Vilnius, Lithuania

Abstract. The problems of automated design system in constructions are presented in the article. Two parts of engineering design are separated: calculation (stress and strains or forces and displacements finding, calculation of useful cross sections and selection of unabated ones from existing assortment) and drawing (construction elements modeling and specification formation). A question, how construction calculation and drawing are separate processes and how they can be mixed actions is analyzed. Literature about Unified Modeling Language usage for designing various systems is presented and examples using Visual Basic programming language are referred. A part of a steel plate truss node project is presented by Unified Modeling Language. A sequence diagram is explored and two types of statechart diagrams are created based on the view of the two parts of engineering design. The first type is calculation and drawing of each object whereas the second one is calculation and then drawing all objects. The statechart diagrams are analyzed and both advantages and disadvantages are shown. A design system of steel plain truss node’s graphical result, node with specifications is presented and finally the conclusions are made.

Key words: Graphics programming, Visual Basic Application, Unified Modeling Language.

1. Introduction

Calculation of constructions is very important part of engineering design. First, calculated schema of construction is created and stress and strains are founded at any point of construction or forces and displacements are founded at the specific cross sections of construction from external load, acting on it and construction weight. Specific mathematical methods are created as finite difference and finite elements for calculating complex constructions. Secondly, useful cross sections are calculated and selected unabated from existing assortment. If they do not exist in the assortment, compound cross sections are modeled. After calculated schema of construction calculations are completed, we have the cross sections of the future construction’s separate elements.

Drawing of constructions is another very important part of engineering design. Having cross sections of construction elements, we need to model these elements, connect them to each other and form the construction itself. The elements and the construction engineering drawings and all objects’ specification are presented.

Automated Design System (ADS) realizes these two design parts - construction calculation and drawing, but ADS needs to be modeled and programmed. In order to accomplish this, design system and programming language working in the graphical environment are needed.

Unified Modeling Language (UML) is still being advanced today. It evolves theoretical fundamentals and creates programming systems for automation modeling process [1-3]. Modeling language UML is used for designing varied programs and systems [4-6]. Projects presented by modeling language UML are implemented with Visual Basic (VB) programming language [7-8]. Various Computer Aided Design (CAD) systems use VB version Visual Basic for Applications language (VBA) [9-13]. In the AutoCAD environment we can program with VBA language [14-18].

Let’s analyze the question how construction calculation and drawing are separate processes and how they can be mixed actions. It came up as a problem while solving questions of ADS creation of steel plate truss node.

2. Project

UML logical models that reflect system’s dynamic properties are presented by beha-
Behavior diagrams. There are four behavior diagrams: collaboration, sequence, statechart and activity. For solving problems sequence and statechart diagrams will be used.

The sequence diagram (Fig 1) shows objects’ activity and actions on other objects based on time. It also shows the length of object existence in the system and the order of creation. In the sequence diagrams communications among objects are accented not their static structures. The top-down time axis (dotted line) plays an important role in these diagrams. Program’s objects are presented at the top of the diagram. The first object is the user, who controls program’s form with keys. Further program creates objects in the diagram in sequence from left to right. Vertical bars under program’s objects show object’s creation moment and length of its active work on time axis. Actions in this diagram are numbered that show designated operations sequence.

In this sequence diagram user controls a form from which it begins to calculate cross-section truss bar. Then the system automatically finds fund-required cross-section in the database, forms construction, fulfils stress and stability control, and draws the bar. After that the system automatically finds welding seam material in the database, calculates welding seam between the bar and the node sheet, and draws the seam. Finally the system automatically designs the node sheet and draws it. The user can ask for specification tables of graphical objects.

Each graphical object is calculated and drawn; this method forms a truss node. Active information about already drawn objects, which is useful for designing the whole frame, is lost when using this design method. Let’s analyze two design variants using statechart diagram.

2.1. Calculation and drawing of each object

State chart diagram describes objects’ dynamic behavior. State changes may happen because of inside transformations and actions from outside objects. Let’s analyze formation of a truss node’s dynamics when each object is calculated and drawn (Fig 2).
The design of a truss node has three states. First state is the design and drawing of a truss bar. Second state is the design and drawing of a welding seam between the bar and the future node sheet. This is an integration state of the node’s design, which is iterated dependent on the number of bars in the truss node. Third design state of a truss node starts when we have all of the node’s bars and seams, then we can design node’s sheet dependent on the forces and welding seams’ lengths.

This method visualizes each designed object separately which obviously shows all inaccuracies. It helps a programmer to quickly fix program’s mistakes, but information about drawn objects is lost.

2.2. First comes calculation then drawing all objects

The second variant of a truss node design has four states (Fig 3). First state is the calculation of a truss bar. Second state is the calculation of a welding seam between the bar and the future node sheet. Third designing state is writing information to the matrix. This is an integration state of the node’s design, which is iterated dependent on the number of bars in the truss node. Fourth design state of a truss node starts when we have calculated all of the node’s bars and seams, then we can drawing node’s bars, seams and sheet dependent on the matrix information.

![Statechart Diagram](image)

Fig 3: Truss node’s automated design system second statechart diagram

This method visualizes designed objects right away after all calculations and is intended to realize already toned and tested program.

3. Example

An engineer frequently designs steel truss. This work is done faster if special programming procedures for calculating and visualizing graphical objects are used. Presented truss nodes automated design system. A user writes to programs form length and corner of bars, forces. Program’s control angle bar cross-sections characteristics database table, main menu and concrete record found by programming method, which area is larger then calculated one, are shown in Fig 4.

![Main Menu and Information](image)

Fig 4: Main menu and automatically founded information

Program’s procedure results for designing truss node and updating drawing with specification formation are shown in Fig 5 and Fig 6.
The presented program’s procedure results show that it is possible to design steel truss node with some bars and welding seems in the sheet.

4. Conclusions

It is very important to see results at the beginning stage of programming when the first procedures for calculation and visualization are written. In this way we can visually see errors and mistakes.

Information about already drawn objects is necessary when drawing several graphical objects; so that parts of information about all objects are stored.

In the final program version it is better to do calculations first and write useful information to vectors or matrices, and only after that draw the drawing.

UML sequence diagram shows objects’ creation moments and life length, actions to other objects and their order of priority.

UML statechart diagram describes objects’ dynamic behavior.

References


OBLICZENIA I RYSOWANIE ELEMENTÓW KONSTRUKCJI W PROJEKTOWANIU TECHNICZNYM