

The Journal of Polish Society for Geometry and Engineering Graphics

58 Volume 14 (2004), 58 –63

AUTOMATIZED FORMATION OF SPECIFICATIONS
IN ENGINEERING DRAWINGS

Algirdas SOKAS

Vilnius Gediminas Technical University

11 Sauletekio ave., LT2040 Vilnius, Lithuania
email: algirdas.sokas@fm.vtu.lt

Abstract. We can analyse the engineering graphics result computer-aided design (CAD) file as a database
of design information that is developed over time. Each software application has its own native file format.
A text-only or American Standard Code for Information Interchange (ASCII) file uses nothing more than
the standard 256 characters. For design information analysis we can use some kind of graphic exchange
formats. These are standardied formats that capture graphic information in the same way that a text file
captures text data. The Drawing Interchange Format (DXF) developed by Autodesk in 1982 is popular for
analysis CAD information. Formulation of problem. Prepared methods and Visual Basic Application
(VBA) procedures for solve these design problems: creates matrix with graphical objects’ names and num-
bers, in order to find a list of similar graphical objects; creates elements’ specifications in the drawing. The
following procedures are presented: procedure fragment which calculates the number of graphical objects
and writes objects’ names to a vector string, the next procedure finds the same names of graphical objects
in vector and calculates their number; this new information is written to matrix, in which the first column
has names of graphical objects from drawing database (DDB) and the second column has the correspond-
ing number of these objects. The presented examples of procedures show that it is possible to control
names and numbers of graphical objects in the drawing. Using this technology in the engineering draw-
ings, we can automatically design specifications of drawing elements.

Key Words: graphics programming, exchange formats, drawing database, Visual Basic, application

1. Introduction

In 1960, a young Massachusetts Institute of Technology graduate student, Ivan Suther-
land, decided to do his Ph.D. thesis on the application of computer graphics to engineering
design. The project was called Sketchpad and created in 1963. First computer-aided design
(CAD) product Line Drawing System was created by David Evans and Ivan Sutherland in
1969 [1].

Now we can analyse the engineering graphics result CAD file as a database of design
information that is developed over time. Each software application has its own native file
format. Other file formats are standardised so they can be read by many different applications.
A text-only or American Standard Code for Information Interchange (ASCII) file uses noth-
ing more than the standard 256 characters.

For design information analysis we can use some kind of graphic exchange formats.
These are standardized formats that capture graphic information in the same way that a text
file captures text data. Initial Graphic Exchange Specification (IGES) format [2] was devel-
oped first and published in 1980. The Drawing Interchange Format (DXF) [3] developed by
Autodesk in 1982 is popular for analysis of CAD information. Relatively new Standard for
the Exchange of Product Model Data (STEP) format [4] was published as international stan-
dard ISO 10303 in 1994.

The DXF format changes with each new release of AutoCAD. For the first 10 releases
Autodesk did nothing to allow an older version of AutoCAD to read drawings made with newer
versions of the software. The binary DXF for AutoCAD 10 was developed by Autodesk only in
1988 [5].

ISSN 1644-9363 / PLN 15.00 © 2004 PTGiGI

A. SOKAS: Automatized Formation of Specifications in Engineering Drawings 59

In the AutoCAD environment we can program with C, AutoLISP and Visual Basic
(VB) languages. Now VB is Microsoft object-oriented programming language. Visual Basic
for Applications (VBA) is another Basic language version, which is now included to many
Microsoft programs as Word, Excel, PowerPoint, Access. Since AutoCAD 14 we can use
VBA for graphics programming. The main difference between VBA and VB is that VBA runs
in the same process space as AutoCAD, providing an AutoCAD-intelligent and very fast pro-
gramming environment.

2. Formulation of problem
For a designer it is urgent to draw a graphical object, but also information connected

with that object is needed. Firstly, geometrical parameters; secondly, object material; and fi-
nally, other information connected with the graphical object (cost, supplier, producer, etc.).
The first articles [6] about engineering drawings are written about specifications, materials
and amounts.

Formulation of problem. Prepared methods and VBA procedures for solve these de-
sign problems: creates matrix with graphical objects’ names and numbers, in order to find a
list of similar graphical objects; creates elements’ specifications in the drawing.

3. Drawing database
All information about drawing in the AutoCAD system is in the drawing database

(DDB). We will study it in DXF format, which is in many graphical systems. Data that de-
scribe entity is a list. It is made of different DXF group codes. Each such group is separated
by brackets also forms a list from code, dot and meaning. Code defines property, dot is a dis-
tinctive sign, and meaning is property’s parameter. For example, a list (0 . "CIRCLE") in-
forms that code equals to zero and defines entity type, meaning is entity name (Fig 2).

Figure 1: Drawing database

Draw a circle and get such DXF format:

 ((-1 . <Entity name: 4006aea8>) (0 . "CIRCLE")
 (330 . <Entity name: 4006acf8>) (5 . "65")
 (100 . "AcDbEntity") (67 . 0) (410 . "Model")
 (8 . "0") (100 . "AcDbCircle") (10 220.0 140.0 0.0)
 (40 . 31.6228) (210 0.0 0.0 1.0)

A. SOKAS: Automatized Formation of Specifications in Engineering Drawings 60

In the first row code "–1" indicates entity name, "0" - entity type, "330" – program
handle, "5" – entity handle, "100" – subclass data marker, "67" – space model or paper, "410"
– layout name, "8" – layer name, "10" – centre of a circle, "40" – radius of a circle, "210" – z
axis direction.

Knowing DDB structure and DXF file codes, we can create programming methods for
creating elements’ specifications in the drawing.

4. VBA procedures
We will realize graphical objects’ accounting technology by programming with Visual

Basic Application language for AutoCAD. An object is the main element of the program-
ming language VBA. We will go deep into the technology of the graphical objects’ manage-
ment.

Procedure fragment which calculates the number of graphical objects and writes ob-
jects’ names to a vector string:

Number = ThisDrawing.ModelSpace.Count
For i = 0 To Number - 1
 Set grafObj = ThisDrawing.ModelSpace.Item(i)
 v(i + 1) = grafObj.ObjectName
Next I

Names of graphical objects in the drawing database are presented by a code and entity
name, for example, list (100 . “AcDbCircle”). Algorithm for sorting graphical objects are in
the drawing (Fig 2).

Figure 2: Algorithm for sorting graphical objects in the drawing

A. SOKAS: Automatized Formation of Specifications in Engineering Drawings 61

Procedure fragment for sorting names of graphical objects in the drawing:
For i = 1 To Number - 1
 For j = i + 1 To Number
 If Asc (Right (Left (v (i), 5), 1)) > Asc(Right (Left (v (j), 5), 1)) Then

x = v(i)
v(i) = v(j)
v(j) = x

 End If
 Next j
Next i

The fifth sign ASCII code from names of graphical objects are compared in the third
row of the procedure fragment. The names in the vector string are sorted according to this
comparison.

The next procedure finds the same names of graphical objects in vector V and calcu-
lates their number k. This new information is written to matrix [Y], in which the first column
has names of graphical objects from DDB and the second column has the corresponding num-
ber of these objects. Algorithm for calculating graphical objects and formatting a matrix are
shown in Fig 3.

Figure 3: Algorithm for calculating graphical objects and formatting a matrix

A. SOKAS: Automatized Formation of Specifications in Engineering Drawings 62

Procedure fragment realize presented algorithm:

j = 1 : k = 1
y(1, 1) = v(1) : y(1, 2) = 1
For I = 2 To Number
 If Asc(Right (Left(y(j, 1), 5), 1)) <> Asc(Right (Left(v(i), 5), 1)) Then
 j = j + 1 : y(j, 1) = v(i) : k = 1
 Else : k = k + 1
 End If : y(j, 2) = k
Next i
mj = j

Here mj – number of different graphical objects, j – index of an object, k – number of
the same objects corresponding to each j.

The next procedure fragment shows how the names of graphical objects from DDB
can be changed to other useful names:

For j = 1 To mj
 Select Case y(j, 1)

Case "AcDbArc": y(j,1) = "Arc"
Case "AcDbCircle": y(j,1) = "Circle"
Case"AcDbEllipse":y(j,1)="Ellipse"
Case"AcDbBlockRefere":y(j,1)= "Block"
Case "AcDbPolyline":y(j,1) = "Polyline"
Case"AcDbSpline": y(j,1) ="Spline"

 End Select
Next j

We can print the new information. The result is presented in Fig 4.

Figure 4: Drawing and specification

Printing procedure fragment for graphical objects in the drawing:

For j = 1 To mj
 If Asc(y (j, 1)) <> 0 Then
 it(0) = pt(0) + 5

it(1) = pt(1) - 15 - j * 15
it(2) = pt(2)

A. SOKAS: Automatized Formation of Specifications in Engineering Drawings 63

 StrText = j & " " & y(j, 1)
 Set objText = ThisDrawing.ModelSpace.AddText(StrText, it, 10)
 objText.Update
 it(0) = pt(0) + 150

StrText = y(j, 2)
 Set objText = ThisDrawing.ModelSpace.AddText(StrText, it, 10)
 objText.Update
 End If
Next j

Presented examples of procedures show that it is possible to control names and num-
bers of graphical objects in the drawing. Using this technology in the engineering drawings,
we can automatically design specifications of drawing elements.

5. Conclusions
 the main formats of drawings and DXF history are presented.
 VBA procedure fragments for defining number of graphical objects in the drawing,

sorting objects and calculating number of same objects, changing names of objects, and
printing a list are presented.

 algorithm to calculate graphical objects and format matrix are presented.
 automated design of specifications from graphical objects in the drawing are presented.

References
[1] Smith A. R.: The Stuff of dreams. Computer Graphics World, July 1998.

(http://cgw.pennnet.com/Articles).
[2] Smith B.: Initial graphics exchange specification. (IGES), version 4.0. Warrendale,

PA: Society of Automotive Engineers, 1988.
[3] AutoCAD 2002 DXF Reference Guide. Autodesk Inc. 2001. 182 p. (http: //www. auto-

desk.com/techpubs/autocad/dxf/)
[4] International Organization for Standardization. STEP (ISO 10303) on a page, URL.

(http://www.iso.ch/iso/)
[5] Walker J.: The Autodesk file. Bits of history, words of experience. Switzerland,

Neuchatel, 1994. (http://www.fourmilab.ch/autofile/)
[6] Masters E.H.:The engineering design functions which the computer can most effectively

aid. Computer-Aided Design, Vol 25, No 2, 1993, 130-135.

AUTOMATYCZNE TWORZENIE SPECYFIKACJI OBIEKTÓW W
RYSUNKACH INŻYNIERSKICH

Możemy analizować obiekty graficzne otrzymane drogą operacji CAD jako dane in-

formacyjne i przetwarzać je. Każdy program komputerowy (aplikacja) posiada własny orygi-
nalny format pliku. W plikach typu ASCII wykorzystuje się nie więcej niż 256 standar-
dowych znaków. Do analizy informacyjnej możemy używać pewne wymienne rodzaje forma-
tów graficznych, które sprowadzają się do tekstowych plików danych. Wśród nich najbardziej
popularnym jest tekstowy format DXF.

Reviewer: Henryk GLIŃSKI, PhD, MSc
 Received June 17, 2004

