EXAMPLES OF GRAPHICAL REPRESENTATIONS REALISED BY SUBSPACE PROJECTIONS WITH BUNDLE DISPERSED CENTRES

Bogusław JANUSZEWSKI
Rzeszow University of Technology
Department of Engineering Geometry and Graphics
2 Poznańska st., 35-084 Rzeszów, Poland, phone +48-17 8651307
email: banjanus@prz.rzeszow

Abstract

The following paper analyses examples of R subspace projections with bundle dispersed centers, in which R are graphical representations, including reversible transformations. The result of the analysis is a list of examples of the R mapping apparatuses, when the R projections are graphical representations of three or four-dimensional projective spaces. The final section of the paper presents examples of constructions of images of a straight line, a plane and a hyper plane derived with the help of distinguished types of the R mapping.

Key Words : projection, projection apparatus, subspace projection with bundle dispersed centres, image of subspace

1. Introduction

A so-called subspace projection with bundle dispersed centres was defined in [1]. This projection, here marked by \mathbf{R}, can be realised in an n -dimensional $\boldsymbol{P}_{\mathbf{n}}$ projective or an affine space ($\mathbf{n} \geq 2$), when a so-called apparatus of the \mathbf{R} projection is selected in $\boldsymbol{P}_{\mathbf{n}}$. This apparatus consists of (Fig.1):

Figure 1: Ideogram of the structure of the \mathbf{R} projection apparatus and its method of operation

- a $\langle\mathrm{C}, \mathrm{B}\rangle$ bundle of subspaces with C core and B field, called a base of the \mathbf{R} projection centres,
- a $\left\langle\mathrm{K}, P_{\mathrm{n}}\right\rangle$ bundle with a ($\mathrm{n}-\operatorname{dim} \mathrm{B}+\operatorname{dimC}$)-dimensional core K and the P_{n} field,
- an H projective relation, which transforms the $\left\langle\mathrm{K}, P_{\mathrm{n}}\right\rangle$ bundle onto the $\langle\mathrm{C}, \mathrm{B}\rangle$ bundle and may be a collineation or a correlation,
- a P subspace of projections.

The defined \mathbf{R} subspace $\left\{\langle\mathbf{C}, \mathbf{B}\rangle,\left\langle\mathbf{K}, \boldsymbol{P}_{\mathbf{n}}\right\rangle, \mathbf{H}, \mathbf{P}\right\}$ projection apparatus allows us to assign each point $X \in \boldsymbol{P}_{\mathbf{n}}$ respectively to ($X \mathrm{O} \mathbf{K}$) element of the $\left\langle\mathbf{K}, \boldsymbol{P}_{\mathbf{n}}\right\rangle$ bundle, when $(X O \mathbf{K})$ is a symbol of a junction of the X point and the \mathbf{K} subspace. The ($X \mathbf{O} \mathbf{K}$) subspace corresponds in the \mathbf{H} relation to the \mathbf{S}_{X} element in the $\langle\mathbf{C}, \mathbf{B}\rangle$ centre base of the \mathbf{R} projection; \mathbf{S}_{X} is the \mathbf{R} projection centre for the X point. Finally, the (X OS \mathbf{S}_{X}) junction, called the \mathbf{R}_{X} projection formation, with the \mathbf{P} subspace of projections gives the $X^{\mathbf{R}}=\mathbf{R}_{X} \cap \mathbf{P}$ product, which is the image - projection of the X point in the \mathbf{R} subspace projection of $\mathbf{P}_{\mathbf{n}}$ onto the \mathbf{P} subspace of projections.

The analysis of the structure of the apparatus and operating features of the \mathbf{R} projection leads to a conclusion that the \mathbf{R} projection can be, in some cases, a reversible transformation of the points of the $\boldsymbol{P}_{\mathbf{n}}$ space, generally positioned against \mathbf{C}, \mathbf{B} and \mathbf{K}. It occurs when $\operatorname{dim} \mathbf{C} \leq 1 / 2(\operatorname{dim} \mathbf{B}-3)$, where \mathbf{H} is a collineation or $\operatorname{dim} \mathbf{C} \leq-1$ and $\mathbf{B} \neq \boldsymbol{P}_{\mathbf{n}}$, where \mathbf{H} is a correlation.

The properties of the \mathbf{R} projection with bundle dispersed centres differ depending on dimensions of common parts for the \mathbf{P} subspace of projection and projection centres assigned to the points of the $[X]$ set, generally positioned against \mathbf{C}, \mathbf{B} and \mathbf{K}. This issue was analysed in [2], where the following three (fundamentally different) types of the \mathbf{R} projection were distinguished:

- UG projections, where $\operatorname{dim}\left(\mathbf{S}_{X} \cap \mathbf{P}\right)=$ const. ≥ 0 for all points of $[X]$ set,
- oMg projections, where $\operatorname{dim}\left(\mathbf{S}_{X_{i}} \cap \mathbf{P}\right)=-1$ and $\operatorname{dim}\left(\mathbf{S}_{X j} \cap \mathbf{P}\right)=$ const. ≥ 0, where X_{i} and X_{j} are points constituting two disjoint sets $\left[X_{i}\right]$ and $\left[X_{j}\right]$ such, that $\left[X_{i}\right] \cup\left[X_{j}\right]=[X]$,
$-{ }_{\mathbf{G}} \mathbf{M G}_{\mathbf{g}}$ projections, where $\operatorname{dim}\left(\mathbf{S}_{X i} \cap \mathbf{P}\right)=$ const. ≥ 0 and $\operatorname{dim}\left(\mathbf{S}_{X j} \cap \mathbf{P}\right)=$ const. ≥ 0, but $\operatorname{dim}\left(\mathbf{S}_{X i}\right.$ $\cap \mathbf{P}) \neq \operatorname{dim}\left(\mathbf{S}_{X_{i}} \cap \mathbf{P}\right)$, where X_{i} and X_{j} are points constituting two disjoint sets $\left[X_{i}\right]$ and $\left[X_{j}\right]$ such, that $\left[X_{i}\right] \cup\left[X_{j}\right]=[X]$.

Each of the distinguished types of the \mathbf{R} projection can take form of a graphical representation, under the assumption that its subspace of projections is the π plane. Such projections have particularly wide possibilities for application in technically utilised mappings. Moreover, thanks to the simplicity of their analytical description, these \mathbf{R} projections can be realised using computer software. The following Table presents a numerical attempt to describe conditions which guarantee a possibility of creation of $\mathbf{U G}, \mathbf{o M G}, \mathbf{G} \mathbf{M G}$ projections apparatuses as mappings of the $\boldsymbol{P}_{\mathbf{n}}$ space.

Table 1

Type of \mathbf{R} projection	Information on elements of the \mathbf{R} projection apparatus			
	H - collineation		H - correlation	
	dim C*	dim B*	dim C*	dim B*
UG	n-3	$\in\{\mathbf{n}-1, \mathbf{n}\}$	n-3	n-1
oMg	n - 4	$\in<\mathbf{n}-2, \mathbf{n}>$	$\in<-1, \mathbf{n}-4>$	$\mathbf{n}-2$
GMG	n-3**	$\in\{\mathbf{n}-1, \mathbf{n}\}^{* *}$	$\in<-1, \mathbf{n}-3>$	n-1

The next main part of the considerations covers in details properties of more interesting examples of projection apparatuses of $\mathbf{U G}, \mathbf{o M G}, \mathbf{G} \mathbf{M G}$ projections when these projections are mappings of the \boldsymbol{P}_{3} and the \boldsymbol{P}_{4} spaces. Additionally, it shows cases where the distinguished \mathbf{R} mappings are reversible transformations in the $[X]$ set of the representation space, generally positioned against the elements of \mathbf{R} projection apparatus. The demonstrative
schemes of the structures of the distinguished \mathbf{R} mapping apparatuses and their methods of operation are shown in Table 2 (for the 3-dimensional space \boldsymbol{P}_{3}) and in Table 3 (for the 4dimensional space \boldsymbol{P}_{4}).

Table 2: Examples of the structure of the \mathbf{R} mapping apparatuses and their methods of operation in the \boldsymbol{P}_{3} space (green lines - graphical symbols of elements of the \mathbf{R} mapping apparatus, blue lines - graphical symbols of the subspaces applied in projecting of $X_{\mathrm{i}} \in\left[X_{\mathrm{i}}\right]$, red lines - graphical symbols of the subspaces applied in projecting of $\left.X_{\mathrm{j}} \in\left[X_{\mathrm{j}}\right]\right)$

Table 3.:Examples of the structure of the \mathbf{R} mapping apparatuses and their methods of operation in the \boldsymbol{P}_{4} space (green lines - graphical symbols of elements of the \mathbf{R} mapping apparatus, blue lines - graphical symbols of the subspaces applied in projecting of $X_{\mathrm{i}} \in\left[X_{\mathrm{i}}\right]$, red lines - graphical symbols of the subspaces applied in projecting of $X_{\mathrm{j}} \in\left[X_{\mathrm{j}}\right]$)

Mapped space - \boldsymbol{P}_{4}									
$P_{4} / 1$	$\operatorname{dim} \mathbf{B}=2$	$\operatorname{dim} \mathbf{C}=-1$	$\operatorname{dim} \mathbf{K}=1$	H-correl	$\mathrm{P}_{4} / 2$	$\operatorname{dim} \mathbf{B}=2$	$\operatorname{dim} \mathbf{C}=0$	$\operatorname{dim} \mathbf{K}=2$	H-collin or correl
Type of $\mathbf{R}-\mathbf{O M G}$		\mathbf{R} is a reversible mapping for$X \in \boldsymbol{P}_{4}-\Lambda_{B}$			Type of R- OMG		\mathbf{R} is a non-reversible mapping		
$P_{4} / 3$	$\operatorname{dim} \mathbf{B}=3$	$\operatorname{dim} \mathbf{C}=-1$	$\operatorname{im} \mathbf{K}=0$	H - correl	$P_{4} / 4$	$\operatorname{dim} \mathbf{B}=3$	$\operatorname{dim} \mathbf{C}=0$	$\operatorname{dim} \mathbf{K}=1$	H- collin
Type of R- MG		\mathbf{R} is a reversible mapping for$X \in \boldsymbol{P}_{3}-l_{\mathrm{b}}$			Type of R- OMG		\mathbf{R} is a reversible mapping for$X \in \boldsymbol{P}_{3}-\Lambda_{\sigma}$		

$P_{4} / 5$	$\operatorname{dim} \mathbf{B}=3$	$\operatorname{dim} \mathbf{C}=0$	$\operatorname{dim} \mathbf{K}=1$	H-correl	$P_{4} / 6$	$\operatorname{dim} \mathbf{B}=3$	$\operatorname{dim} \mathbf{C}=0$	$\operatorname{dim} \mathbf{K}=1$	H-collin or correl
Type of $\mathbf{R - M G}$		\mathbf{R} is a non-reversible mapping			Type of $\mathbf{R}-\mathbf{M G}$		\mathbf{R} is a non-reversible mapping ($C \in \pi$)		
$P_{4} / 7$	$\operatorname{dim} \mathbf{B}=3$	$\operatorname{dim} \mathbf{C}=1$	$\operatorname{dim} \mathbf{K}=2$	H-collin or correl	$\mathrm{P}_{4} / 8$	$\operatorname{dim} \mathbf{B}=3$	$\operatorname{dim} \mathbf{C}=1$	$\operatorname{dim} \mathbf{K}=2$	-collin or correl
	of R- MG	\mathbf{R} is a non-reversible mapping$(c \neq c \cap \pi \neq \emptyset)$			Type of R- UG		\mathbf{R} is a non-reversible mapping$(c \cap \pi=\emptyset)$		

To sum up, the images of a straight line, a plane and a hyper plane, received in the \mathbf{R} mappings described in Table 2, case $P_{3} / 1$ and case $P_{3} / 3$, also in Table 2, case $P_{4} / 1$, are shown respectively on Figures 2, 3 and 4. The selection of images of the subspaces signals a variety of possible structures of the images. Namely:

- the image of a t straight line, which is drawn on the Figure 2 b , is a conic defined by the common points of homologous elements of the $\left\langle S_{\pi} \pi\right\rangle$ and $\left\langle Z_{t}, \pi\right\rangle$ collineation bundles,
- the image of a τ plane, which is drawn on the Figure 3b, is a core conic of the $\langle\varnothing, \pi\rangle_{\beta}$ and $\langle\varnothing, \pi\rangle_{\tau}$ correlation bundles,
- the image of a T hyper plane, which is drawn on the Figure 4 b , is the conic tangent to the all straight lines $K^{\mathbf{R}}$ and $\left[t_{\mathrm{i}}^{\mathrm{R}}\right]$.
The above mentioned construction solutions prove that the reversible \mathbf{R} mappings are effective methods of graphic representations for multidimensional projective spaces.
a)

b)

COMMENTS TO THE SOLUTION

$\left\{\langle\varnothing, b\rangle,\left\langle k, P_{3}\right\rangle, \mathbf{H}_{\mathrm{CL}}, \pi\right\}$ - the apparatus of \mathbf{R} projection, $t\left(Z_{t}, T^{\pi}\right) \tau$ - the mapped straight line, Ω_{t} - the projection formation of the t straight line - the warped quadric defined by the collineation bundles $\langle\varnothing, b\rangle$ and $\langle\varnothing, t\rangle, b, s_{T}, t, s_{Z} \subset \Omega_{t,}$ $\mu_{S}\left(b, s_{T}\right)=\mu_{S}\left(b, T_{\pi}\right)-$ the tangent plane to Ω_{t} in the $S_{\pi}=b \cap \pi$ point, $\mu_{Z}\left(t, s_{Z}\right)=\mu_{Z}\left(t, S_{Z}\right)$ - the tangent plane to Ω_{t} in the $Z_{t}=\mathrm{t} \cap \pi$ point, $\Omega_{t} \cap \pi=t^{\mathbf{R}}$ - the image of the t straight line - a conic, $m_{Z}=\mu_{Z} \cap \pi$ - the tangent to $t^{\mathbf{R}}$ in the Z_{t} point,
$m_{S}=\mu_{S} \cap \pi$ - the tangent to $t^{\mathbf{R}}$ in the S_{π} point.

Figure 2: The structure of the image of a t straight line in the \mathbf{R} projection defined by $\left.\{<), b>,<k, \boldsymbol{P}_{3}>, \mathbf{H}_{\mathbf{C L}}, \pi\right\}$ apparatus: a) the spatial situation, b) the construction of the image

Figure 3: The structure of an image of a τ plane in the \mathbf{R} projection defined by the $\left.\{<, \beta\rangle,<K, \boldsymbol{P}_{3}\right\rangle$, $\left.\mathbf{H}_{\mathbf{C R}}, \pi\right\}$ apparatus:
a) the spatial situation, b) the construction of the image

COMMENTS TO THE FIGURE
$\left\{\langle\varnothing, \beta\rangle,\left\langle k, P_{4}\right\rangle, \mathbf{H}_{\mathrm{CR}}, \pi\right\}-$ the apparatus of the \mathbf{R} projection, T - the mapped hyper plane,
$b=T \cap \beta, \quad=b \circ T$,
$l=\pi \cap(\beta \mathrm{O} \quad)$,
$\mathbf{H}_{\mathrm{CR}}\left(\left\langle k, P_{4}\right\rangle\right)=\langle\varnothing, \beta\rangle$,
$K=k \cap T$,
$\left\langle k, P_{4}\right\rangle \cap T=\langle K, T\rangle$,
$\lambda_{\mathrm{i}} \in\left\langle k, P_{4}\right\rangle \Rightarrow \lambda_{\mathrm{i}} \cap T=$
t_{i},
if $t_{\mathrm{i}} \in\langle K, T\rangle$, then $s_{\mathrm{i}} \in$
$\langle\varnothing, \beta\rangle$ and $s_{\mathrm{i}}=\mathbf{H}_{\mathrm{CR}}\left(t_{\mathrm{i}}\right)$ is the projection centre for all points of the

$$
\bigcup_{i} t_{\mathrm{i}}-K \text { set, }
$$

β is the projection centre for K,
$\left(s_{\mathrm{i}} \mathrm{O} t_{\mathrm{i}}\right) \cap \pi=t_{\mathrm{i}}^{\mathbf{R}}$,
$t_{\mathrm{i}}^{\mathrm{R}}=T_{\mathrm{i}}^{\mathrm{R}} \mathrm{O}\left(s_{\mathrm{i}}^{k} \cap K^{\mathrm{R}}\right)$, when
$T_{\mathrm{i}}^{\mathrm{R}}=l \cap w_{\mathrm{i}}\left(W_{\mathrm{i}} \mathrm{O} T_{\mathrm{i}}^{\mathrm{k}}\right)$,
$T^{\mathbf{R}}=K^{\mathbf{R}} \cup\left[t_{\mathrm{i}}^{\mathbf{R}}\right]$,
$\hat{\boldsymbol{t}}$ - the conic which is tangent to all straight lines $K^{\mathbf{R}}$ and $t_{\mathrm{i}}^{\mathbf{R}}$ - the outline of \mathbf{R} projection of T hyper plane

Figure 4: The structure of the image of a T hyper plane in the \mathbf{R} projection defined by the $\left.\{<), \beta>,<k, \boldsymbol{P}_{4}>, \mathbf{H}_{\mathbf{C R}}, \pi\right\}$ apparatus: a) the spatial situation, b) the construction of the image

References

[1] Januszewski B.: Subspace projections with bundle dispersed centres. Proceedings of the 4-th Seminar „Geometry and Graphics in Teaching Contemporary Engineer", Szczyrk 2003.
[2] Januszewski B.: Rodzaje podprzestrzeniowych rzutowań o wiazkowo rozproszonych środkach. Lecture at the International Conference 'Contemporary problems with geometrical modelling', Lvov 2003.

PRZYKŁADY ODWZOROWAŃ GRAFICZNYCH REALIZOWANYCH ZA POMOCĄ RZUTOWAŃ PODPRZESTRZENIOWYCH Z WIĄZKOWO ROZPROSZONYCH ŚRODKÓW

W artykule zawarto analizę przykładów rzutowań podprzestrzeniowych R z wiązkowo rozproszonych środków. Wzięto pod uwagę te spośród rzutowań R, które prowadzą do odwzorowań wykreślnych, w tym wzajemnie jednoznacznych. W rezultacie przeprowadzonych analiz zestawiono przykłady budowy aparatów rzutowań typu R, dla trój- i czterowymiarowych przestrzeni rzutowych.

W ostatniej części artykułu pokazano przykłady konstrukcji obrazów prostej, płaszczyzny i hiperpłaszczyzny uzyskane za pomocą wyróżnionych rodzajów rzutowań typu R. Przykłady te dowodza, że analizowane rzutowania dają możliwość efektywnego zapisu figur zawartych w trój- lub czterowymiarowej przestrzeni rzutowej.

Reviewer: Prof. Bogusław GROCHOWSKI, DSc

