DEVELOPMENTS OF OPTIONAL LENGTH CIRCULAR ARCS

Mieczysław MAJEWSKI

Technical University of Szczecin , Faculty of Civil Engineering and Architecture Aleja Piastów 50, 70-311 SZCZECIN, POLAND e-mail: mmaha@interia.pl

Abstract. This work deals with an analytic-graphical method of construction approximated developments of optional length circular arcs on a straight line. Such problems often appear in the engineering, designing and workshop practices. The method presented by A. Kochański [1] concerns the development of an arc of one-half of a circle, while methods given by S. Polański, A.A. Kowalewski and J. Daniluk [2] as well, as by the author [3] bring approximated results, where the range of measuring errors is 0,1% to 0,6% (for methods included in the work [2]), and 0,0005% to 0,15% (in relation to the work [3]). The solution included in the hitherto elaboration is based on the implementation of a curve circumference (circular [4]) projection for transformation of final points of given circular arc onto final points of its development on a straight line. The work treats about the geometric idea with it's justification, which is a base of the (called here) analytic-graphical method. The work presents also a practical part of this method. Presented method gives an accuracy up to 0,052% of length of measured arcs.

Keywords: circular arc, analytic-graphical method, approximated developments of arc, length of arc

1. The geometric idea with it's justification and practical method of preparation the developments of circular arcs sections.

Let us take optional sector $l_a = \bigcap SA$ of circular arc determined by a centre O and radius r, which we have to develop onto a straight line s – tangent to the circle o in the point S, in such a way, as for initial point S of the arc SA, being united with the initial point of its development $|SA^0|$ (fig.1). Now, let us discuss such a geometric transformation of the point A into point $A^0 \in s$, as for the sector $X^0_a = |SA^0|$ being equal by length with the given arc $l_a = X^0_a = |SA^0|$. It appears convenient for these conditions the implementation of curve – circumference (circular [4]) projections, where projecting circles o_n posses unchangeable point S, and theirs centres K_n belong to some curve k. Thus, the essence of the problem discussed brings to a determination of a course of curve line k, dependent exclusively on a radius r of a circle o, which following points K_n , ..., are equally distant from points S, A, ... and A^0 , ... accordingly.

In order to determine the equation of a curve k within assumed coordinate system S_{xy} , let us discuss geometric dependencies, which band its optional point, for example K_a , with the given arc SA, bearing central angle α_a , and with a sector $x^{\theta}_a = l_a = |SA^{\theta}|$ of a straight line s, which length is equal with the length of given arc $l_a = |SA^{\theta}| = \frac{1}{180} \alpha_a \pi r$. Coordinates $x^k_a = \frac{1}{2} x^{\theta}_a$, and y^k_a for the point K_a are determined as a result of equations for: a midperpendicular OA' of the sector SA, and midperpendicular of the sector SA^{θ} . Thus, solving the equation $y = -x \operatorname{ctg} \frac{\alpha_a}{2} + r$ for the midperpendicular OA' of the sector SA, (which constitutes with the axis x = s an angle equal $\frac{\alpha_a}{2}$), together with the equation $x = x^k_a = \frac{1}{2}x^{\theta}_a$ for the

midperpendicular of the sector SA^{θ} , where $x^{\theta}_{a} = l_{a} = \frac{1}{180} \alpha_{a} \pi r$, we come to results $x^{k}_{a} = \frac{1}{2} x^{\theta}_{a} =$ $\frac{1}{360}\alpha_a \pi r$ and $y_a^k = -\frac{1}{360}\alpha_a \pi r \operatorname{ctg} \frac{\alpha_a}{2} + r$, which are coordinates of point K_a belonging to the curve k. By making a quantification of coordinate x_n^k of the point K_n dependent on the radius r and from central angle α , i.e.: $x_n^k = \frac{1}{360} \alpha \pi r$ the equation for the curve k is as following: $y = -\frac{1}{360} \alpha \pi r \operatorname{ctg} \frac{\alpha}{2} + r$, and its asymptote *d* is expressed by equation $x = r\pi$. Taking into consideration selected specific practical aims, the construction of developments of circular arcs sections will be realized with the use of prepared before curve k. A complex analytic-graphical method will be used here. This method is less comfortable (because of preparation of curve k for a selected circular arc), but gives accurate results when the curve k is suitably good contracted. In this case, the sequence of steps in solving the development of optional sector of circular arc, e,g.: $l_a = \cap SC$ of a circle o – determined by its final points S and C or by central angle $\alpha_c = \measuredangle SOC$, is following: after assuming axes x = s, tangent to a circle o in the point S, and y = SO – of perpendicular co-ordinate system S_{xy} , on a base of an equation: $y = -\frac{1}{360} \alpha \pi r \operatorname{ctg} \frac{\alpha_a}{2} + r$ we draw a curve k (a sector SK_c is enough, assuming quantities of an angle α from 0° to α_c). Than we draw a midperpendicular of a sector SC, which in an intersection with a curve k is determining a point K_c – a centre of projecting circle o_c = SCC^{θ} . The circle o_c defined by its centre $K_c \in k$ and a radius $r_c = |K_c S| = |K_c C| = |K_c C^{\theta}|$ intersecting with the tangent s = x, determines a point C^{0} , and at the same time the sector $l_{c} =$ |SC'|, which is a development of the circular arc $l_c = \cap SC$ onto the straight line s.

Let us notice, that for developments of circular arcs of a length from 0 to $2r\pi$ (α – from 0° to 360°), centres K_n of projecting circles o_n belong only to positive branch of the curve k, which coordinates y_n^k take values from 0 to ∞ .

2. Construction procedure of approximated development of circular arcs sections, which have a length up to $\frac{1}{4}$ of their circumference

On the base of analysis of a course of curve k expressed by an equation $y = -\frac{1}{360} \alpha \pi r \operatorname{ctg} \frac{\alpha}{2} + r$, particularly of its initial sector determined by coordinates x_n^k , from $x_n^k = 0$ to $x_n^k = x_d^k$, it has been stated, that this sector may be approximated with a high precision (sufficient for practical use) by accordingly defined circular arc o_k (fig. 2). By such replacement of some initial sector of curve k, for example delimited by point K_d , which is applied for determining the development of an arc $l_d = \cap SD$, equal $\frac{1}{4}$ circumference of a circle o – by adequate circular arc o_k , presented construction of development of circular arc up to $\frac{1}{4}$ circumference of a circle appears simple and applicable for practical use.

Thus, let us determine firstly a circular arc o_k , which is approximating a sector SK_d of the curve $k = S K_a K_b K_c K_d$, in the following way. We assume some points, for example A, B, and C, which belong to a quarter SD of circular arc o, in such a way, that they determine accordingly central angels: point A – an angle $\alpha_a = 30^\circ$, point B – an angle $\alpha_b = 45^\circ$ and point C – an angle $\alpha_c = 60^\circ$. Than, for assumed values of angles α_n we determine quantities of coordinates $x^k_n = \frac{1}{360} \alpha_a \pi r$ and $y^k_n = -\frac{1}{360} \alpha_n \pi r \operatorname{ctg} \frac{\alpha}{2} + r$ for points K_a , K_b , K_c and K_d of the curve k. For three selected ternary points, for example S, K_a , K_d ; S, K_b , K_d and S, K_c , K_d of the curve k, we write three triple systems of equations for circles determined by according three ternary points, it is $x^2 + y^2 = r_1^2$; $(x^k_a - a_1)^2 + (y^k_a - b_1)^2 = r_1^2$ and $(x^k_d - a_1)^2 + (y^k_d - b_1)^2 = r_1^2$, After solution of each system of equations we come to results, which are coordinates a_1, \ldots, b_1, \ldots of centres O^1_k of circles o^1_k , ... and radiuses r_1 ,... of three circles, that successively approximate to the searched circle o_k , approximating a curve k on the

base of its points S, K_a , K_b , K_c and K_d , we determine as arithmetic means of analogical coordinates a_1 , a_2 , a_3 and b_1 , b_2 , b_3 , and of radiuses r_1 , r_2 , r_3 – determined for three circles o_{k}^1 , o_{k}^2 , o_{k}^3 , defined by three ternary points S, K_a , K_d ; S, K_b , K_d and S, K_c , K_d .

The three presented values a_k , b_k and r_k – for the determined circle o_k , expressed by quantity of a radius r of the circle o (to which the given arc belongs) are quantified according to results of calculations: $a_k = -0.008972 r$, $b_k = 1.576414 r$ and $r_k = 1.576438 r$.

In practical circumstances, which usually don't require such high precision, as resulting from above calculations it is suggested to accept accuracy to one per thousand in cases where higher precision is required, it is $a_k = -0,009 r$, $b_k = 1,576 r$ and $r_k \cong 1,576 r$, while for other cases, where such high precision is not required it is proposed to limit accuracy up to one per cent, it means $a_k = -0,01 r$, $b_k = 0,58 r$ and $r_k \cong 0,58 r$.

The determination of development of given circular arc $l_f = \bigcap SF$ (for angles $\alpha_f < 90^\circ$) onto straight line s = x, tangent in initial point S of the arc by presented approximated method we proceed as following (fig. 2). After drawing an axes y = SO, we determine location of center O_k of the circle o_k , which coordinates are $x^{\theta}_k = a_k = -0,009 r$ and $y^{\theta}_k = b_k = 1,576 r$, than draw a circular arc o_k , determined by the centre O_k and radius $r_k \cong 1,576 r$ through a point S. Than we draw a midperpendicular of a chord SF, determining a point K_f of its intersection with an arc o_k , and after that from the point $K_f \in o_k$ as a centre, we draw an arc of projecting circle o_f , which intersecting with a straight line s = x, determines point F^{θ} . This point together with the point S constitute a sector $l_f = |SF^{\theta}|$, being a development of an arc l_f $= \bigcap SF$ onto straight line s = x.

Presented analytic-graphical method gives a measurements error up to 0,048%, when the accuracy of centres' O_k coordinates of circles o_k is up to 0,001, and – a measurements error up to 0,052%, when the accuracy of centres' O_k coordinates of circles o_k is up to 0,01. But the maximal measure occurs when the circular arcs sections are close to 1/4 of their circumference.

Bibliography:

- [1] WOCJAN S., LEWANDOWSKI Z., SZYMAŃSKI E.: Rysunek techniczny, PWN 1968.
- [2] POLAŃSKI S., KOWALEWSKI A., DANILUK J.: Geometria dla konstruktorów, PWN 1965.
- [3] MAJEWSKI M.: Konstrukcje geometryczne służące do wyznaczania przybliżonych długości łuków krzywych stożkowych, Międzyuczelniane Czasopismo Naukowe Geometria Wykreślna i Grafika Inżynierska, t. I, Łódź-Wrocław 1995.
- [4] BIEDA K.: *Wiązka stożkowych jako aparat rzutujący*, Zeszyty Naukowe Geometria Wykreślna, t. VIII, Poznań 1973.

Recenzent: dr inż. Tadeusz DYDUCH

Wpłynęło do Redakcji w kwietniu 2002 roku