SUBSPACE PROJECTIONS WITH CENTRES DISPERSED ON SECOND-DEGREE FORMS

Bogusław JANUSZEWSKI

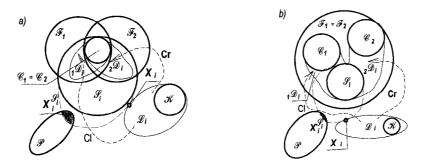
Rzeszow University of Technology, Department of Engineering Geometry and Graphics 2 Poznańska st., 35-084 Rzeszów, Poland, phone +48-17 865 13 07 email: <u>banjanus@prz.rzeszow</u>

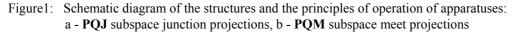
Abstract. The concept of *subspace projections* has already been discussed in the subject literature and the rules of operation and properties of the projections whose centres and projecting forms for particular points of represented space are subspaces, were defined in relation to so-called *bundle projections* (with fixed centres) and to *subspace projections with bundle dispersed centres*. In this paper some general properties of *subspace projections with centres dispersed on second-degree forms* are discussed.

Key Words: subspace projection, bundle projection, subspace projection with centres dispersed on second-degree forms.

1. Introduction

The rules of operation and properties of *subspace projections*, i.e. the projections whose centres and projecting forms for particular points of represented space are subspaces, were already specified in relation to so-called *bundle projections* (with fixed centres) in [1], and to *subspace projections with bundle dispersed centres* [2,3]. The paper discusses general properties of *subspace projections with centres dispersed on second-degree forms*. This type of projection is referred to as **PQ**.


In order to define the apparatus of projection **PQ** for an **n** – dimensional projective P_n space let us establish in this space three bundles $\langle P_n, \kappa \rangle$, $\langle \mathbf{F}_1, \mathbf{C}_1 \rangle$, and $\langle \mathbf{F}_2, \mathbf{C}_2 \rangle$ of the same type (i.e. with the same factors of manifolds $\mathbf{f}_M = \mathbf{n} - \dim \kappa + 1$), with the following properties: $1^\circ \dim \mathbf{F}_1 = \dim \mathbf{F}_2$, and $\dim \mathbf{C}_1 = \dim \mathbf{C}_2$,


 $2^{\circ} \mathbf{F}_1 = \mathbf{F}_2$, whereas $\mathbf{C}_1 \neq \mathbf{C}_2$, if the defining apparatus of the **PQ** projection belongs to the family of so-called *meet projections*, marked here as **PQM** (fig.1b),

 $3^{\circ} \mathbf{F}_1 \neq \mathbf{F}_2$, whereas $\mathbf{C}_1 = \mathbf{C}_2$, if the defining apparatus of the **PQ** projection belongs to the family of so-called *junction projections*, marked here as **PQJ** (fig.1a).

Moreover, let us introduce the following projective transformations:

- Cl being a collineation that transforms the bundle $\langle P_n, K \rangle$ onto the bundle $\langle F_1, C_1 \rangle$,
- Cr being a correlation that transforms the bundle $\langle P_n, K \rangle$ onto the bundle $\langle F_2, C_2 \rangle$.

With such defined projective transformations, the bundles $\langle \mathbf{F}_1, \mathbf{C}_1 \rangle$ and $\langle \mathbf{F}_2, \mathbf{C}_2 \rangle$ correspond with each one to the other in the correlation $\mathbf{CR} = \mathbf{Cr} (\mathbf{Cl}^{-1})$.

The established bundles and defined projective transformations allow us to associate with every point $X_i \in P_n$ the following three subspaces: $1^\circ \mathbf{L}_i = X_i O \mathbf{K}$, $2^\circ {}_1\mathbf{D}_{Xi} = \mathbf{Cl}(\mathbf{L}_i) \in \langle \mathbf{F}_1, \mathbf{C}_1 \rangle, 3^\circ {}_2\mathbf{D}_{Xi} = \mathbf{Cr}(\mathbf{L}_i) \in \langle \mathbf{F}_2, \mathbf{C}_2 \rangle$. Let us also assume that:

- in case of a so-called meet subspace projection **PQP**, the meet ${}_{1}\mathbf{D}_{Xi} \cap {}_{2}\mathbf{D}_{Xi} = \mathbf{s}_{i}$ with the dimension equal to dim $\mathbf{C}_{1} = \dim \mathbf{C}_{2}$,
- in case of a so-called junction subspace projection **PQJ**, the junction ${}_{1}\mathbf{D}_{Xi} O {}_{2}\mathbf{D}_{Xi} = \mathbf{s}_{i}$ with the dimension equal to dim $\mathbf{F}_{1} = \dim \mathbf{F}_{2}$,
- is the centre of projection for a distinguished point $X_i \in P_n$.

It is easy to prove, that:

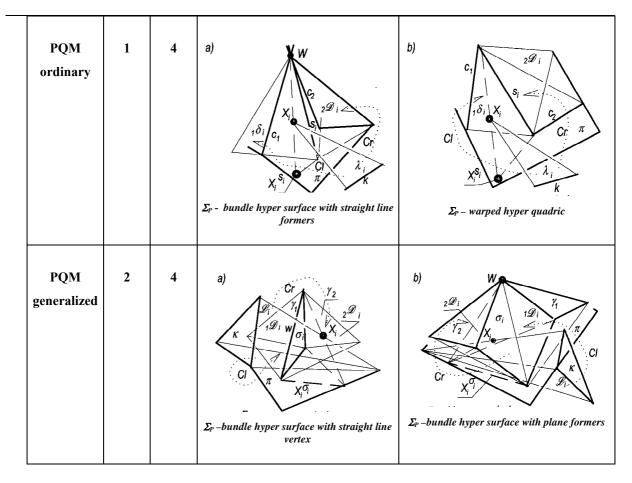
- in the **PQM** projection, centres s_i of this projection, as meets of homologous elements of the correlated bundles $\langle \mathbf{F}_1, \mathbf{C}_1 \rangle$ and $\langle \mathbf{F}_2, \mathbf{C}_2 \rangle$ are subspace formers of a second-degree form Σ_{P_i} ,
- in the **PQJ** projection, centres s_i of this projection, as junctions of homologous elements of the correlated bundles $< \mathbf{F}_1, \mathbf{C}_1 >$ and $< \mathbf{F}_2, \mathbf{C}_2 >$ are subspace generators of a second-degree form Σ_J .

Therefore, the defined sets of centres of the projections PQM and PQJ are subspaces dispersed on the second degree forms Σ_P and Σ_J , respectively, and they satisfy our preliminary assumptions made in this analysis.

In order to complete the apparatuses of the projections **PQM** and **PQJ**, one should still establish their forms of projections in the P_n space. Similarly, as in the case of any classical subspace projection also in the case of currently considered projections one should consider as the form of projection such a subspace **P** which determines the represented P_n space together with almost every one of the centres s_i . Moreover, depending on whether the defined projection is supposed to be an *ordinary* or *generalized projection* [4], the distinguished subspace **P** should be either disjoint with almost all the projection centres, or it should cross every of these centres in a subspace nonnegative dimension not greater than dim**P** - 2.

The **PQ** projections can have practical application when they lead to a graphical representation of the represented P_n space. This result is achieved when planes, traditionally referred to as π , are adopted as forms of projections of the **PQ** projections. In such a case, from our previous identifications it results that if the **PQ** projection is to be:

- an ordinary projection, then dim $C_1 = \dim C_2 = n-3 = \dim S_i$, when the projection under consideration has characteristics of the **PQM** projection; and dim $F_1 = \dim F_2 = n-3 = \dim S_i$, when the **PQ** projection belongs to the **PQJ** family of projections;
- a generalized projection, then dim $C_1 = \dim C_2 = n-2 = \dim s_i$, when the projection under consideration has characteristics of the **PQM** projection; and dim $F_1 = \dim F_2 = n-2 = \dim s_i$, when the **PQ** projection belongs to the **PQJ** family of projections,


The structures of **PQ** projection apparatuses that lead to mappings of the P_3 and P_4 spaces are presented in drawings in tables 1 and 2 respectively.

Type of the PQ projection	dim C _i	dim F _i	Visual drawing of a projection apparatus	
PQJ generalized	-1	1	a) Cl T Cl T Cl T Cl T Cl T Cl T Cl T Cl T Cl T Cl T L_{1} L_{2} L_{2	b) f_2 Σ_J r_2 Σ_J r_3 χ_1 χ_1 χ_1 χ_1 χ_1 χ_2 χ_1 χ_2 χ_1 χ_2 χ_1 χ_2 χ_1 χ_2 χ_1 χ_2 χ_2 χ_2 χ_1 χ_2 χ_2 χ_2 χ_1 χ_2
PQM ordinary	0	2	$ \begin{array}{c} \phi_{1} = \phi_{2} \\ 1d_{1} \\ \vdots \\ C_{1} \\ \vdots \\ C_{1} \\ \vdots \\ F_{p} - conic \end{array} $ Cr	
PQM ordinary	0	3	$ \frac{1 d_{i}}{C_{1}} \xrightarrow{\Sigma_{p}} \frac{2 \delta_{i}}{C_{2}} \xrightarrow{2 \delta_{i}} C_{i} $ $ \frac{C_{i}}{\pi} \xrightarrow{S_{i}} \xrightarrow{K_{i}} K_{i} $ $ \frac{K_{i}}{K_{i}} \xrightarrow{K_{i}} \xrightarrow{K_{i}} K_{i} $ $ \frac{\Sigma_{p} - curvilinear quadric}{K_{i}} \xrightarrow{K_{i}} \xrightarrow$	
PQM generalized	1	3	a) (z_{r}, z_{r}) (z_{r}, z_{r}) (z	b) k c_1 λ_1 Σ_P -warped quadric Σ_P -warped quadric

Tablet 1. Structure of apparatuses of the **PQ** mapping projections of P_3 space

Type of the PQ projection	dim C _i	dim F _i	Ideological schema of a structure of a projection apparatus		
PQJ ordinary	-1	1	a) Cl T T T T T T T T	b) Cl T_2 C_1 T_2 C_1 T_2 C_1 T_2 C_1 T_1 T_2 C_1 T_1 T_2 T_1 T_2 T_1 T_1 T_2 T_1 T_2 T_1 T_2 T_1 T_2 T_1 T_2 T_1 T_2 T_1 T_2 T_2 T_1 T_2	
PQJ generalized	-1	2	a) $C_{r} \neq 2$ T_{p-} envelope quadric	$ \frac{1}{p_{1}} = \frac{1}{p_{1}} + \frac{1}{p_{1}} +$	
PQJ generalized	0	2	a) g_1 g_2 g_1 g_2 g_1 g_2 g_1 g_1 g_2 g_1 g_2 g_1 g_1 g_2 g_1 g_2 g_1 g_1 g_2 g_1 g_2 g_1 g_2 g_1 g_1 g_2 g_2 g_2 g_1 g_2	b) $c_1 = C_2$ d_1 d_2 d_1 d_1 d_1 d_1 d_1 d_1 d_1 d_1 d_1 d_1 d_1 d_1 d_1 d_2 d_1 d_1 d_2 d_1 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_2 d_1 d_2 d_2 d_1 d_2 d_2 d_1 d_2 d_2 d_2 d_1 d_2 d_2 d_2 d_2 d_1 d_2 d_2 d_2 d_2 d_3 d_2 d_3 d_4 d_2 d_2 d_3 d_4 d_2 d_2 d_3 d_4 d_2 d_3 d_4 d_2 d_3 d_4	
PQM ordinary	1	3	a) $\mathcal{F}_{I} = \mathcal{F}_{2}$ $\mathcal{F}_{P} s_{i}$ $\mathcal{F}_{P} s_{i}$	b) $\mathcal{F}_{\overline{f}} = \mathcal{F}_{2}$ $\mathcal{F}_{p} = \mathcal{F}_{2}$ $\mathcal{F}_{p} = \mathcal{F}_{p}$ $\mathcal{F}_{p} = warped quadric$	

Tablet 2. Structure of apparatuses of the PQ mapping projections of P_4 space

It is also worth noting that like with subspace projections with bundle dispersed centres, some of the PQ-type projections under consideration are minimal reversible representations [4] of the P_n space. It means that for every point X_i belonging to the P_n space, which is generally situated versus the apparatus of the PQ projection, it is possible to reconstruct the position of this point towards the previously rebuilt apparatus of the PQ projection, using the X_i^{si} projection as a basis. For example, these are representations with such properties in the PQ family of graphical projections of the P_3 and P_4 spaces:

- an ordinary **PQM** projection of the P_3 space with its apparatus described in the position 2 in table 1,
- an ordinary **PQM** projection of the **P**₃ space with its apparatus described in the position 3 in table 1,
- an ordinary **PQM** projection of the P_4 space with its apparatus described in the position 5 in table 2.

Generally speaking, it is possible to prove that the **PQ** subspace projection of the P_n space onto the projection subspace **P** is a minimal reversible representation of this space, when it belongs to the **PQM**-type family, and elements of its apparatus have the following properties:

- 1° S_i O K $\neq P_{n}$,
- $2^{\circ} \mathrm{S}_{\mathbf{i}} \cap \mathbf{K} = \emptyset,$
- $3^{\circ} \dim S_i < \frac{1}{2} (\dim F_i 1).$

References

- Polański S.: Rzutowania wiązkowe w odwzorowaniach przestrzeni n-wymiarowych, Prace Naukowe Politechniki Lubelskiej Nr 152, Budownictwo 22, Lublin 1986.
- [2] Januszewski B.: Subspace Projections with Bundle Sispersed Centres, Wydawnictwo Politechniki Śląskiej, Proceedings of 4-th Seminar "Geometry and Graphics in Teaching Contemporary Engineer", Gliwice-Szczyrk 2003.
- [3] Januszewski B.: Rodzaje podprzestrzeniowych rzutowań o wiązkowo rozproszonych środkach, Oficyna Wydawnicza Politechniki Rzeszowskiej, Zeszyty Naukowe z. 39, Rzeszów 2005.
- [4] Januszewski B., Steciak A.: Podstawy pewnej klasyfikacji wykreślnych odwzorowań wielorzutowych wiązkowych, Materiały Poseminaryjne Międzyuczelnianego Seminarium GEODEZJA I GEOMETRIA INŻYNIERSKA W BUDO-WNICTWIE I INŻYNIERII, tom 2, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów 1996.

RZUTOWANIA PODPRZESTRZENIOWE PRZESTRZENI RZUTOWYCH REALIZOWANE ZE ŚRODKÓW ROZPROSZONYCH NA UTWORACH DRUGIEGO STOPNIA

Zasady działania oraz właściwości *rzutowań podprzestrzeniowych*, tzn. rzutowań, których środki i utwory rzutujące poszczególne punkty odwzorowywanej przestrzeni są podprzestrzeniami, zostały już wcześniej sprecyzowane w stosunku do tzw. *rzutowań wiązkowych* (ze stałego środka) oraz dla *podprzestrzeniowych rzutowań ze środków rozproszonych wiązkowo*. W niniejszym opracowaniu podaje się ogólne informacje o właściwościach rzutowań *podprzestrzeniowych przestrzeni rzutowych realizowanych ze środków rozproszonych na utworach drugiego stopnia*.