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Abstract. The problem discussed in this paper concerns the curvature of the surface of our globe. The 
measure of the globe curvature will be determined by a relative growth of the relative change of linear 
distance between two geodesics which are parallel at their origin but converge when approaching to the 
Pole. A sphere and an ellipsoid of revolution will be taken as models for further consideration. 
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1. Introduction 
 
About 300 B.C., Euclid of Alexandria wrote a treatise in thirteen books called the Elements [1, p.3]. In the logical development of any branch 
of mathematics, any definition of a concept or relation involves other concepts or relations. Therefore the only way to avoid a vicious circle 
is to allow certain primitive concepts and relations (usually as few as possible) to remain undefined. Similarly, the proof of each proposition 
uses other propositions, called postulates or axioms must remain unproved. Euclid did not specify his primitive concepts and relations, but 
was content to give definitions in terms of ideas that would be familiar to everybody. [1, p.4]. Thus we have… a Euclidean geometry, in 
which the following axiom will be valid [1, p.288]: 
The Euclidean Axiom. For some point A and some line r, not through A, there is not more than one line through A, in the plane Ar, not 
meeting r. 

         H.S.M. Coxeter [1] 
 

It has been time, when it was believed that the Fifth Euclidean Axiom can be derived 
from the other postulates or axioms of the Euclidean geometry.  The other mathematicians, 
such as N. I. Lobachevsky, C. F. Gauss and J. Bólyai dealt with this problem, but it was only 
Gauss who first admitted the necessity of recognition this postulate to be an axiom. Gaussian 
research work on differential geometry of surfaces brought him not only to the Theorema 
Egregium on curvature, which had earlier been defined by O. Rodrigues, but also led Gauss to 
understanding various principal, geometrical measures existing in a given surface.  
 
Every sufficiently small portion of a geodesic is the shortest path on the surface connecting the end-points of the portion….All the intrinsic 
properties of a surface (such as Gaussian curvature) can be determined by drawing geodesics and measuring their arc lengths…. The entire 
course of a geodesic is determined if one of its points and its direction at this point is given…. The straightest lines may also be characterized 
by the geometric requirement that the osculating plane of the curve is to contain  the normal to the surface at every point of the surface. 

Hilbert and Cohn-Vossen [2]  

 
The curves so determined are called geodesics. Since geodesics are the curves of 

shortest lengths, the geodesics on a sphere are the great circles, and the geodesics in a plane 
are the straight lines [1, p. 371]. In particular, geodesics on the surface can be considered to 
be equivalent to straight lines on surfaces. According to Gauss, geodesics do not always com-
ply with the Fifth Euclidean Axiom.  
 

There are various kinds of geometries, which can be considered on surfaces. In gen-
eral, Euclidean geometry will not be included into these considerations. The character of ge-
ometry applied to a certain surface depends on the choice of a point at which it will be exam-
ined and the point neighborhood. B. Riemann was a scientist who first put attention to the fact 
that geometry may be implied on various types of surfaces. 
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2. Gaussian Curvature 
C.F. Gauss introduced the notion of curvature κ. When κ is constantly zero then the 

curve is a straight line. “Curvature” κ measures the rate at which any non-straight curve tends 
to depart from its tangent [1. p. 322]. The curvature may be determined also on a surface, the 
normal curvature κ attains at least one maximum and one minimum values. These values are 
called the principal curvatures, the positions of t in which they occur are called the principal 
directions, and the curves whose direction is always principal are called the lines of curvature 
[1, p.352]. The curvature of the plane is equal to zero. Curvature κ of a surface can be deter-
mined in the following way. We consider a geodesic triangle for which the sum  
of interior angles is greater than 180o. Difference between the sum of interior angles and 180o 
is proportional to the area of a geodesic triangle. Curvature κ is the ratio, i.e. a coefficient  
of  proportion , between these two values. 
Many surfaces may have continuous variation in their curvature. In such cases we should 
limit the neighboring area and thus we obtain a ratio of curvature at a specific point. 
 
Curvature κ of a surface implies the type of geometry used for further research.  If curvature κ 
is constant and greater than zero then there are no straight lines and elliptic geometry will be 
applied (e.g. on the sphere). If curvature κ is equal to zero then Euclidean (parabolic) geome-
try will be considered. Again, if curvature κ is less than zero then we have to do with geome-
try in which through a given point more than one line parallel to a given line can be passing 
and this is a case of a hyperbolic geometry. 
 
3. Geometry on the sphere surface  

The idea of curvature can be illustrated based on two-parameter geometry on the 
sphere surface. 

 
Figure 1. Sphere 

 
In case of points with latitude not much different from the equator, it is sufficient to limit the 
equation to only two first elements in an expansion of an exponential series of a cosine func-
tion. We obtain the following expression for measuring the distance between the two given 
points A and B 

 ( ) ( )2/1 2ϕ−∆=∆ oxx       (1) 

where φ – is a point latitude. 
 
The angle φ is equal to a ratio between the length of the meridian segment s and the globe 
radius R. 
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   Rs /=ϕ          (2) 
Shortening of the initial distance will be expressed with the equation ( )ox∆

  ( ) ( ) ( ) ( ) ( ) )2/(2/ 222 Rsxxxx ooo ∆=∆=∆−∆ ϕ     (3) 

The existence of this difference between the initial and the more distant lengths directly justi-
fies application of  geometry of curvilinear surfaces. The distance between two points A and 
B diminishes rapidly when we approach sphere Pole. Relative growth rate of the change of 
distance should be considered. To be more precise it will be the relative growth rate of the 
relative change of distance. The measure of the curvature corresponds to a linear measure 
between the two geodesics that are perfectly parallel at their origin. 
Let us deal with the linear measure now. Let us consider a small, supplementary segment ds  
such as the overall distance now is s + ds, where ds denotes an infinitely small segment. In a 
new position the distance between the two geodesics will be again shorter 

( ) ( ) ( ) ( ) 22 2/ Rdssxxx oonew +∆−∆=∆     (4) 
Let us now drop the small value of ds2 in (4) and then we obtain 

( ) ( ) ( ) ( ) 22 2/2 Rsdssxxx oonew +∆−∆=∆     (5) 
After transformation of (5) we receive 
 

(relative change of distance) =  

= (change of distance)/(growth of the linear measure) = 
( ) ( ) ( ) 2/ Rsx

ds
xx

o
new ∆−=

∆−∆
 (6) 

 

(relative growth of the relative change of distance) =  
= (relative change of distance)/(distance from the point at which the relative growth of the 

linear measure is equal to zero) = 
( ) ( ) 2

2

/
/

Rx
s

Rsx
o

o ∆−=
∆−

    (7) 

 
4. Geometry on the surface of an ellipsoid of revolution 

Let us now consider the case of an ellipsoid of revolution. Each parallel of latitude (in-
cluding an equator) is a circle lying in the plane perpendicular to the ellipsoid axis and having 
a radius r=N cosφ, where N is a radius of curvature in a normal cross-section at a point with a 
given latitude φ. 
Let us denote 
( )newx∆ - distance between points A and B as measured along a parallel  

12 λλλ −=∆  - difference between the longitudes at these points. 
We have  

( ) λ∆=∆ rx new        (8) 
and in consequence  

( ) ( )12cos λλϕ −=∆ Nx new       (9) 
where N depends on a and e2 , while a denotes the length of the ellipsoid axis, e – its eccen-
tricity. 
The formula 

ϕ
λ

cosN
x

r
x newnew ∆

=
∆

=∆      (10) 

makes it possible to calculate the difference between longitudes of two point A and B based 
on the length of a parallel segment. 
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Spherical trigonometry finds application into solving geodesic problems whenever the meas-
urements are taken in so vast areas of the globe surface that its curvature can not be discarded. 

 
 

Figure 2. Ellipsoid of revolution          Figure 3: Spherical triangle ZAB 
 
Distance d between two points A and B will be measured by the length of an arc segment ly-
ing on a great circle passing through these points.  Let us consider a spherical triangle with 
vertices at points Z (the North Pole), A  and B. The lengths of the sides ZA and  ZB in triangle 
ZAB are respectively equal to Aϕπ −2/  and Bϕπ −2/ , while the angle between points A and 
B equals BA λλ − . 
The arc measure d of the curvilinear segment AB is 

( ) ( ) ( ) ( ) ( BABABAd )λλϕπϕπϕπϕπ −−−+−−= cos2/sin2/sin2/cos2/coscos  (11) 
and  

( )BABABAd λλϕϕϕϕ −+= coscoscossinsincos       (12) 
while the questioned distance is equal to Rd, 
where  
R – denotes a radius of the globe, 
d – denotes arc measure of the segment  AB. 
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KRZYWIZNA 

 
 Zagadnienie rozważane w niniejszej pracy dotyczy krzywizny na powierzchni kuli 
ziemskiej. Miarą krzywizny jest względny przyrost względnej miary odległości między dwie-
ma geodezyjnymi początkowo idealnie równoległymi. Występujące zagadnienie porównano 
dla powierzchni kuli i dla elipsoidy obrotowej.  


